Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page	2	Mark Scheme	Syllabus	Paper
		Cambridge International A Level – May/June 2015	9701	42
1 (a)	fl	uorine: 1s ² 2s ² 2p ⁵		[1]
	S	ulfur: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴		
(b)	(i) $2HCl \longrightarrow H_2 + Cl_2$		[1]
	(i	i) bond energies: HF (562) is stronger than HCl (431) or F_2 (158) is weaker than Cl_2 (244)		[1]
(c)	e T p b	<i>lectronegativity:</i> he attraction by an atom/nucleus/element of the electrons in a bond o air <i>or</i> a molecule <i>ond polarity:</i> is due to atoms/elements of different electronegativities at each end	or a shared of a bond	[2]
(d)	(i) $\mathbf{\dot{e}} \mathbf{F} \mathbf{\dot{e}} \mathbf{\dot{F}} \mathbf{\dot{E}} \dot{$		

or the S–F dipoles don't cancel or molecule is not symmetrical or diagram of see-saw shape.
(allow an ecf for "no dipole" if their structure in (d)(i) has no lone pair)
a) Sulfur can use its d-orbitals or has low-lying/accessible/available d-orbitals or can [1]

either because it has an uneven distribution of electrons or because it contains a lone

- (e) Sulfur can use its d-orbitals *or* has low-lying/accessible/available d-orbitals *or* can expand its octet.
 (allow reverse argument for oxygen; do NOT allow just "sulfur has d-orbitals")
- (f) (i) Burning of fossil fuels *or* coal/oil/petrol/natural gas (NOT methane *or* hydrocarbons) *or* volcanoes *or* roasting/burning sulfide ores
 - (ii) Acid rain

pair

(ii) Yes, it will have a dipole moment,

[2]

[3]

[Total: 11]

Ρ	age 3	3	Mark Scheme	Syllabus	Paper
			Cambridge International A Level – May/June 2015	9701	42
2	(a)	Ar	= 204 × 0.019 + 206 × 0.248 + 207		[2]
		-	= 207.21 (correct a	ans = [2])	
		The	e last answer written by the candidate needs to be written with 2 d.p.	to get the l	ast mark.
	(b)	(i)	Tin(II) oxide is more basic than tin(IV) oxide		[4]
	(0)	(1)	or tin(II) oxide is less acidic than tin (IV) oxide		[1]
		(ii)	e.g. SnO + 2HC $l \longrightarrow$ SnC l_2 + H2O(<i>or</i> ionic <i>or</i> with H ₂ SO ₄)		[2]
			$SnO_2 + 2NaOH \longrightarrow Na_2SnO_3 + H_2O$ (or ionic or with KOH et	c.)	
		(iii)	SnO ₂ stays the same (white) <i>or</i> is stable <i>or</i> no reaction		[3]
			PbO_{2} changes colour (from brown/black to vellow/orange/red)		
			$PbO_{2} \longrightarrow PbO_{2} + \frac{1}{2}O_{2} \qquad \text{or} \qquad 3PbO_{2} \longrightarrow PbO_{2} + O_{2}$		
			$1 \text{ bO}_2 \longrightarrow 1 \text{ bO} \xrightarrow{1} 2 \text{ bO} \xrightarrow{1} 2 \text{ bO}_2 \longrightarrow 1 \text{ bO}_3 \text{ bO}_4 \xrightarrow{1} \text{ bO}_2$		

[Total: 8]

Ρ	age 4	ł	Mark	Scheme	Syllabus	Paper
		Camb	ridge Internationa	I A Level – May/June 2015	9701	42
3	(a)	³³ P-				[2]
	(b)	Solubility decrea	ases (from Mg to Ba	a <i>or</i> down the group)		[4]
		Both lattice ener	rgy/ ΔH_{latt} and enthe	alpy change of hydration / ΔH_{hyd} are in	nvolved	
		enthalpy change	e of hydration decr	eases more than lattice energy		
		So enthalpy cha positive <i>or</i> less o	nge of solution <i>\∆</i> exothermic <i>or</i> less	$H_{ m sol}$ becomes more endothermic <i>or</i> m negative (NOT $\Delta H_{ m sol}$ decreases, or in	ore icreases)	
	(c)	precipitate/solic due to the com shifted over to th	l CaSO₄ would forn non ion effect or ł ne right Ca ²⁴	n K _{sp} is exceeded <i>or</i> the following equil ' ⁽ aq) + SO4 ²⁻ (aq) ≓ CaSO₄(s)	ibrium	[2]
	(d)	charge passed	= 1.8 × 40 x 60	(= 4320 C)		[4]
		n(e ⁻)	= 4320/96500	(= 4.477×10^{-2} mol) ecf		
		n(Cr)	= 0.776/52	(= 1.492×10^{-2} mol) ecf		
		n	= 4.477 × 10 ⁻² /1.	492 × 10 ^{−2} = 3.00 (= 3)		

[Total: 12]

Ρ	Page 5		Mark Scheme Syllabu		Paper
			Cambridge International A Level – May/June 2015 9	701	42
4	(a)	(i)	a solution that resists/minimises a change in its pH or helps maintain it (NOT any of: "maintains pH"; "keeps pH constant"; "no change in pH")when small amounts of acid/ H^+ or base/OH ⁻ are added (both acid a base are needed)	s pH and	. [2]
		(ii)	$\begin{array}{c} HCO_3^- \text{ reacts with } H^+ \text{ ions as follows:} \\ HCO_3^- + H^+ & \longrightarrow H_2CO_3 \ (\textit{or} \ H_2O + CO_2) \\ \text{and with } OH^- \text{ ions thus:} \\ HCO_3^- + OH^- \longrightarrow CO_3^{2^-} + H_2O \end{array}$		[2]
			(the equation arrows can be equilibrium arrows, as long as HCO_3^- is on	the left)
		(iii)	$(pK_a = -log(K_a) = 7.21)$		[2]
			pH = pK _a + log([base]/[acid] = 7.21 + log(0.5/0.3) = 7.43 (7.4)		
	(b)	(i)	$K_{sp} = [Ag^+]^3 [PO_4^{3-}]$ and units: mol ⁴ dm ⁻¹²		[1]
		(ii)	call $[PO_4^{3-}] = x$, then $[Ag^+] = 3x$, and $K_{sp} = 27x^4$		[3]
			$x = (K_{sp}/27)^{1/4} = (1.25 \times 10^{-20}/27)^{1/4} = 4.64 \times 10^{-6} \text{ mol dm}^{-3}$		
			$[Ag^+] = 3x = 1.39 \times 10^{-5} \text{ (mol dm}^{-3})$ (allow 1.4×10^{-5})		
	(c)		$H_3PO_3 + 2Fe^{3+} + H_2O \longrightarrow H_3PO_4 + 2Fe^{2+} + 2H^+$		[2]
			<i>E</i> e _{cell} = 0.77 −(−0.28) = (+) 1.05 V		
		or	$3H_3PO_3 + 3H_2O + 2Fe^{3+} \longrightarrow 3H_3PO_4 + 6H^+ + 2Fe$		
			<i>E</i> ⊖ _{cell} = −0.04 −(−0.28) = (+) 0.24 V		
				[Total: 12]

[Total: 14]

ÒNa

ONa

ÒNa

no reaction

Na

NaOH(aq)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

6 (a) There are three acceptable alternatives – follow each column down vertically:

(i) D is	RCOCl	RCOOCH ₂ CH ₃	$\text{RCO}_2^- \text{NH}_4^+$	
(ii) step 1	$SOCl_2$ (or PCl_3 or PCl_5)	ethanol (e.g.) + conc H ₂ SO ₄	NH ₃	
(ii) step 2	NH ₃ (NaOH negates th	heat		
(ii) step 3	LiA <i>l</i> H ₄ (aq) negates(NOT NaBH ₄ ; Sn + HC <i>l</i> etc.)			

- (b) (i) amine (other groups negate)
 - (ii) phenol and carboxylic acid (both needed)

(iii)

compound	first functional group	second functional group
E	amide	alcohol
F	amine	carboxylic acid
G	amine	ester
Н	amide	phenol

- (iv) Mark this in the following way. For each structure of E, F, G and H:
 - check whether the structure fits the molecular formula C₈H₉NO₂, i.e. that it has: one nitrogen, two oxygens and eight carbons.
 - check that it contains the two groups that the candidate's answers to part (ii) says it contains.

[Total: 13]

[1]

[1]

[4]

[4]

Pa	age 8	3	Mark Scheme	Syllabus	Paper
			Cambridge International A Level – May/June 2015	9701	42
7	(a)	L – i –NH or it co	t is the only compound that is an amino acid <i>or</i> can form (NOT <i>cor</i> –CO– / amide / peptide linkages / bonds ontains an N atom / NH₂ group / CO₂H group	ntain)	[1]
	(b)	mark M1 M2 M3 M4 M5 M6	K both parts of this together – max [4] from the following six points mRNA is complementary to <i>or</i> a copy of (a portion of) DNA mRNA encodes the sequence of amino acids in proteins <i>or</i> each codons (base triplets) codes for one amino acid mRNA binds to/associates with the ribosome tRNAs are specific to their amino acids tRNA contains an anticodon <i>or</i> bonds to the codon/mRNA thro translates the RNA code into the amino acid sequence tRNA carries the amino acid to the ribosome/mRNA	h of its bugh base p	[4] airing <i>or</i>
	(c)	max M1 M2 M3 M4 M5 M6	[3] from the following six points. the pH of that area of the protein would change protein becomes less hydrophilic/soluble or more hydrophobic fewer hydrogen bonds or more van der Waals' (id–id) forces fewer ionic bonds form the tertiary structure/folding/(3D) shape (of the protein) would of the active site would be different/less efficient	change	[3]

[Total: 8]

Page 9		Mark Scheme	Syllabus	Paper
		Cambridge International A Level – May/June 2015	9701	42
8	(a) (i)	The nucleus/proton of a hydrogen atom has spin		[1]
	(ii)	Hydrogen doesn't have enough electrons/electron density		[1]
	(iii)	S/sulfur – it has the greatest number of electrons or highest electro	on density	[1]
	(b) (i)	12 protons (=9+2+1)		[1]
	(ii)	The group responsible for this peak is –OH (allow NH) The D in D ₂ O exchanges with the H in –OH <i>or</i> H is replaced by D <i>or</i> "–OH \rightarrow –OD",		[2]
	(iii)	The adjacent carbon atom has no hydrogen atoms bonded to it		[1]
	(iv)	Methyl/CH ₃ group		[1]
	(v)	P is (CH ₃) ₃ C–CH ₂ OH		[1]
	(c) (i)	$n = \frac{100 \times (M+1)}{1.1 \times M} = \frac{100 \times 0.5}{1.1 \times 9.3} = 50/10.23$ = 4.89 hence 5 carbons		[1]
	(ii)	(Ratio of ⁷⁹ Br: ⁸¹ Br is 1 : 1), hence ratio of M : M+2 : M+4 is 1 : 2 : 1		[1]
	(iii)	Molecular formula of \mathbf{R} is $C_5H_{10}Br_2$		[1]
				[Total: 12]

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9701	42

9 (a)

monomer	addition	condensation	both
		~	
H c = c H	✓		
н_с=с_н ₃	V		

(b) polythene is non-polar or its bonds are non-polar so not (easily) hydrolysed

(c) (i) [1] $\downarrow 0$ $\downarrow 0$ \downarrow

(Allow displayed, skeletal, part-skeletal, structural etc.)

- (ii) The ester (or –COO–) linkage/bond is hydrolysed or reacts with water
- (d) Polythene has (weak) van der Waals' (or id-id) forces[3]PVC has stronger van der Waals' forces or additional dipole forcesNylon has (strong) hydrogen bonding

[Total: 10]

[1]

[3]

[2]